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Abstract

Theoretical analysis of hypersonic boundary-layer receptivity to wall disturbances is
conducted using a combination of asymptotic and numerical methods. Excitation of
the second-mode waves by distributed and local forcing on the flat plate surface is
studied under adiabatic and cooled wall conditions. Analysis addresses receptivity to
wall vibrations, periodic suction-blowing through a hole or slot, and temperature
disturbances. A strong excitation occurs in Jocal regions where forcing is in resonance
with normal waves. It is revealed that the receptivity function tends to infinity as the
resonance point tends to the branch point of discrete spectrum that is typical for the
cooled wall case. Asymptotic analysis resolves this singularity and provides maximal
receptivity levels in the branch-point vicinity. Analytical results are integrated into the
computational module providing fast estimates of receptivity levels for different types
and shapes of wall forcing. Numerical results indicate extremely high receptivity to
vibrations and suction-blowing near the lower neutral branch. Critical amplitudes of
local and distributed vibrations are estimated for bypass of the linear stability phase.
The theoretical model can be used to predict initial amplitudes of unstable waves in

active (ascending) flights accompanied by skin vibrations.
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1. Introduction

In hypersonic flights and quiet wind tunnels, freestream perturbations and body-
induced disturbances are normally small. In this case, the transition process can be
treated as an initial boundary value problem, which comprises excitation of unstable
boundary-layer modes (receptivity problem), their downstream amplification (linear
stability problem) and nonlinear breakdown to turbulence [1, 2]. Transition prediction
technology is usually based on the e” -method [3-5], which considers only the linear
phase of instability growth. All other physics including receptivity and nonlinear
breakdown is incorporated into the value N, which is colibrated for a particular set of
experimental data. The finite amplitude method including receptivity, instability
amplification, and an amplitude criterion for transition onset can avoid many
shortcomings of the e” -method. Recent codes based on the parabolized stability
equations (PSE) can predict the instability evolution and capture the initial phase of
nonlinear breakdown [6-8]. However the PSE codes require initial distributions of the
disturbance amplitude as an input, which should be supplied by receptivity theory.

Despite of a good progress in experimental studies of hypersonic stability [9], we
found only few papers relevant to experiments on hypersonic receptivity [10, 11].
Kendall [10] measured correlation between the freestream and boundary-layer
disturbances in the Mach number range 1.6-5.6, and found that the correlation
coefficient is growing with the Mach number. Experimental data obtained on a flat
plate at Mach 4.5 are in a good agreement with the forcing theory of Mack [12].
However Mack noted that the major difficulty in the use of the forcing theory is that
force disturbances are distinct from free disturbances, and the process by which the
former becomes the latter is unknown. Maslov, Shiplyuk, Sidorenko and Arnal [11]
studied the flat-plate leading edge receptivity to acoustic disturbances in the Mach 6
wind tunnel. Acoustic field was generated by a point source and plane source. It was

found that the leading edge receptivity depends on the acoustic wave inclination angle
y . Maximum receptivity was observed at y =~ 60°. The receptivity coefficient for
two-dimensional acoustic waves with the phase speed ¢=1-1/ M, was much larger

than that measured for three-dimensional acoustic waves generated by the point
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source. These observations are consistent with the theoretical results of Fedorov and
Khokhlov [13].

Only few theoretical studies have been addressed hypersonic receptivity problem.
Fedorov and Khokhlov [13] analyzed receptivity on the sharp leading edge of a flat
plate to external disturbances including sound waves, entropy and vortical waves as
well as leading-edge vibrations. They showed that freestream noise and/or vortical
disturbances induce a local acoustic source on the leading edge. This source generates
acoustic waves, which are synchronized with boundary-layer normal modes (the first
and second modes according to Mack’s classification). That causes a strong excitation
of unstable normal waves by freestream disturbances through the mechanism, which
is qualitatively different from that observed at subsonic speeds [14-19]. Zhong [20]
performed direct numerical simulation of the parabolic leading-edge receptivity to
freestream sound in a hypersonic flow. In his calculations, shock-layer modes and
unstable boundary-layer modes were detected between a bow shock and body surface.
Fedorov [21] showed that external vorticity and entropy disturbances can effectively
generate the second mode near the lower neutral branch. In this region, the first and
second mode waves can be synchronized with entropy/vorticity waves of the phase
speed ¢ =1. In the synchronism region, entropy/vorticity disturbances are partially
swallowed by the boundary layer and excite instability. This mechanism can compete
with the leading-edge receptivity in cases of conical configurations such as a sharp

cone.

Another important type of disturbances is associated with body-induced perturbations.
In active flights, propulsion system generates vibrations of the vehicle skin. These
vibrations can propagate upstream and excite the boundary-layer instability on the
forebody surface. Skuratov, Fedorov and Shogin [22] published transition data
obtained on a 7.5° half-angle sharp cone installed on the rocket nose. Transition loci
were measured during ascending flights in the local Mach number range 2.5-4 at
wall temperature ratios 7, /T,, =0.2—-0.8. Transition onset points were close to
those obtained in conventional (noisy) wind tunnels. Such an early transition seemed
to be due to vibrations of the cone surface. Another source of disturbances is

associated with gaps and slots between elements of the thermal protection system.
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They may work as resonators, which induce periodic suction-blowing on the body

surface. These perturbations can also generate unstable modes in the boundary layer.

Theoretical and experimental studies of the boundary-layer receptivity to body-

~ induced perturbations have been performed for subsonic flows. It was found that the

boundary layer is extremely sensitive to wall perturbations to be in resonance with
Tollmien-Schlichting waves. For example, the theoretical analysis [23] and the wind-
tunnel experiment [24] showed that two-dimensional vibrations of 5 microns
amplitude (about 1% of the boundary-layer thickness) generate the TS waves with the

initial amplitude A4, ~0.1%. Assuming that nonlinear breakdown occurs at the
critical amplitude 4, ~1%, we obtain that the amplification factor is N =
In(A, /A, )~2.3. This value is much less than the empirical value N ~10 typical

for “quiet” conditions. Similar conclusion has been made regarding periodic suction-
blowing induced through a two-dimensional slot in subsonic flat plate [25]. These
findings lead to the assumption that hypersonic boundary layers may be also very

receptive to wall perturbations.

In this report, we perform theoretical analysis of hypersonic boundary-layer
receptivity to wall disturbances. We consider excitation of the second-mode waves by
distributed and local forcing on a flat plate. In Section 2 we formulate the problem,
analyze disturbance field in the case of resonance between the second-mode wave and
distributed wall forcing. Then we consider receptivity to local forcing produced by a
vibrator, periodic suction-blowing through a slot or hole, and temperature
perturbations induced by a heating element. In Section 3 we describe computational
algorithm providing the receptivity function and discuss numerical results for
adiabatic and cooled plate cases. We show that the receptivity function tends to
infinity as the resonance point tends to the branch point of the discrete spectrum.
Receptivity to wall forcing in the branch-point vicinity is analyzed in Section 4.
Critical amplitudes of wall vibrations providing bypass of the linear stability phase are
estimated in Sections 5 for local and distributed forcing. In Section 6, we conclude the

report and discuss future effort.
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2. Receptivity to wall perturbations in the case of a simple
discrete spectrum

In this section, we analyze the disturbance field generated by wall perturbations in the
case of a simple discrete spectrum; ie. eigenvalues of the boundary-layer modes are
assumed to be different. Under this condition, analysis of hypersonic boundary-layer
receptivity to wall forcing can be performed using the theoretical model of [23, 25, 26]

developed for subsonic boundary layers.

2.1 Problem formulation for distributed forcing

We consider a two-dimensional laminar boundary layer of perfect gas on a hypersonic flat

plate schematically shown in Fig. 1. It is assumed that the global streamwise length L is

much larger than the boundary layer thickness scale & =./v.L/U., ; ie. the ratio
&=06/L is small. This is equivalent to the assumption that the Reynolds number
R, =\U,L/v, =¢™ is large. The longitudinal x*, normal y*, transversal z"

coordinates and time ¢ are made nondimensional using § and U; as
(x,y,2)=(x",y",2")/8,t=t"U] /165.

We introduce the slow variable x, = x* / L = &x and specify the nondimensional mean-

flow velocity components (U, V) and temperature T as

U=sU"1U; =Ux,»), V=V"1U =eVy(x,y), T=T" 1T, =T(x,,y). (2.1)
Distributed perturbations of velocity (u,v,w), pressure p and temperature 6 are induced
by vibrations or any other forcing on the body surface. Wall perturbations are represented

in the traveling-wave form

(u,v,w,@) = (¢|s¢2 9(03 9¢4 )exp(lax + lﬂZ - lwt) at y =Os (22)
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where o and B are wavenumber components; @ is angular frequency. The forcing

amplitude is assumed to be small and the following analysis is performed using a linear

theory of small perturbations. The flow disturbance is described by the vector function

\?:(u,%,v,p, 5" 3;—) (2.3)
¥(x,y,2,t) = F(x,y)exp(ifiz —iar) . (2.4)

The amplitude function F(x,y) satisfies a system of partial differential equations

resulted from Fourier transform of linearized Navier-Stokes equations with respect to

time and z -coordinate. These equations can be written in the matrix-operator form
H(»,3,,%,, 83,0, /)F =0. @5)

Boundary conditions are specified as

(FF, F , F) =(0,,0,,0;,0,)expliax) aty =0, (2.6)

|[Fl<waty > @2.7)

As contrasted to a standard stability analysis, the problem (2.5)-(2.7) has non-

homogeneous boundary conditions on the wall (y =0) and describes the flow disturbance

field, which, in general, includes forcing and normal waves generated by wall

perturbations.

2.2 Non-resonance case
We consider a partial solution of the problem (2.5)-(2.7) as a decomposition of the
discrete modes E(x,, y) with eigenvalues «,(x,,8,@) and the force term Fv(xl, y)

with the wavenumber « . Then the disturbance amplitude is expressed in the form

14




F =Y (F+&F,+-)expie”'S,) + F, exp(ic” ax,) (2.8)
k

5, = far, (e, 29

Substituting (2.8) into Egs. (2.5)~(2.7) and grouping terms of the same order of magnitude

with respect to & we obtain a sequence of problems for the amplitude functions

ij (x,,¥), j=0, 1, ... In the first order approximation, we get the eigenvalue problem

o -
(E—HOJFM =0, (2.10a)
(Fio)i3ss =0aty=0, (2.10b)
|Fio| > 0aty > 0. (2.10c)

Here the matrix H, has dimension 8 x 8; its elements depend on the mean-flow profiles

U(x,,y) and T(x,,y), disturbance parameters «, f, ® and Reynolds number

R=.Ux" /v, . Explicit form of the matrix H, is given in [26, 27]. Equations (2.10a)-

(2.10c) form a standard linear stability equation system for locally parallel mean flows.

Forcing term F‘ (x,,y) is a solution of the non-homogeneous problem

[g—Ho)ﬁ:O, @.11a)
(Fissy =Prazaaty=0, (2.11b)
llj"‘.i<ooaty-)oo. ‘ (2.11¢)

If the forcing wavenumber (e, ) coincides with a wavenumber of continuous spectrum,

then the body surface effectively generates acoustic, vortical or entropy waves. If (a, f)
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does not belong to the continuous spectrum, then the forcing disturbance decays

exponentially as y — oo . Hereafter we analyze the latter case.

In the second order approximation, we obtain the non-homogeneous problem

3 - éH, F, - |
(5— H)F =-i— =+ HFy, (2.129)
1
(Fohss=0aty=0, (2.12b)
|Fy| > 0aty »> . (2.12¢)

An explicit form of the matrix H, is given in [26, 27]. Its elements depend on the mean-
flow profile derivatives &U/&,, OI'/ &, and vertical velocity V. This matrix is

associated with nonparallel effects due to the boundary-layer downstream growth.
Solution of the eigenvalue problem (2.10) can be represented in the form
Fko =ck(x1)2k(xlsysak)7 (2.13)

where 4, is eigenfunction normalized by a certain condition. For example, the pressure
disturbance amplitude is constant on the wall: 4,,(x,,0,«,)=1. Problem (2.12) has a
nontrivial solution if its right-hand side is orthogonal to the eigenfunction B.(x,y,2,)

of the conjugate problem. This leads to the following ordinary differential equation for

the amplitude coefficient ¢, (x;)

- fH, - dec . H, A .-
i<B,, 0,,0: ">—d_xf—=[_l<B"’3jZf_>+<B"’H'A" >, » (2.14)
¢ (X15) = €y (2.15)
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where the scalar product is defined as
- - “ 8 —
<B,d>= [YB4,dy. (2.16)
0

Upper bar denotes complex conjugate values; the amplitude coefficient ¢, is assumed to

be prescribed at some initial point x, .

If the interaction between normal modes is neglected, then Eq. (2.14) describes the
normal wave propagation in a weakly nonparallel boundary layer. This approximation is
valid in a region where eigenvalues are different; i.e. @,(x,)# a,(x,) at k # j, and the
forcing wavenumber « # &, ; i.e. in the absence of resonance between wall forcing and

normal wave, receptivity is weak.

2.3 Resonance between forcing and normal waves

We assume that the force wave is in resonance with a normal wave of discrete spectrum

at some point x, = x,,; i.e. a~a,(x,)=a,. We consider the case when the normal
wave is unstable and the resonance point x,, is close to the lower neutral branch. It is
expected that the wall disturbance generates the normal wave in a local region near the
resonance point. Downstream from this region, the normal-wave amplitude exponentially

increases due to the boundary layer instability.

Flow scheme of resonant forcing is shown in Fig. 2. Analysis of Egs. (2.5)-(2.7) indicates

that a strong excitation occurs in a small region where ]xl - xml =0(&'"?). We introduce

the inner longitudinal variable as

E=g" (% —x,0) = O(1). (2.17)
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In dimensional form, the resonance point is x, = L, and the inner-region length is of the
order of I=L-R;" =8-R)>. This length is much larger than the boundary-layer
thickness scale & and much smaller than the distance L from the plate leading edge to

the resonance point.

We assume that the force wavenumber is a =, +y¢"?, where the real parameter y
characterizes resonance detuning. Then the inner solution of Egs. (2.5)-(2.7) is expressed

in the form
F=[e7"2c(E) A, (y) + A.(£,9)+.. Jexplie ™ a,E), 2.18)

where 4,(y) = 4,(x,,,y,@,) is the n"-mode eigenfunction at the resonance point.

Expanding the operator H, in the vicinity of x =x,, we obtain the following inner

problem for the force wave amplitude A,

7 - .dc JH
(}J]——H (x0-Q )JA =-—1E T (X0, @0 ) Ay + & éxl" (X,0,20)4,,  (2.192)
(A )1557 = Praza(xpp)exp(iyl)aty=0, (2.19b)
|4,| > 0aty > . C(219%)

Using a standard approach (see for example [28]) we can express the problem (2.19) in

the form

8 - dc
(_@)—_ Hy(x,9, )j 4, = _’;é? P (xIO’aO Ao + Cf (x109a0 )A + A(J’)(D exp(iyf),
(2.20a)
(4,),35,=0aty=0, - (2.20b)
|4,| > 0aty > e, (2.20¢)
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&)0 =(@,(%10), 0, 9, (x), 0, ©5(x4), 0, 0, (x,0), O)T s (2.20d)

where A(y) is delta function. Problem (2.20) has a non-trivial solution, if its right-hand
side is orthogonal to the eigenfunction EO =B (x;9,¥,a,) of the conjugate problem.

This condition leads to the following equation for the amplitude coefficient c¢(&)

dc

d_§ —ib&c = gexp(iyt), (2.21a)
b= ”Z" (%), (2.21b)
1
B,,®,)..
q=i oo 2.21c)

- O0H -
< Bo,a—a"(xlo,ao )4, >

If the normal wave has zero amplitude upstream from the resonance region, then the

boundary condition for Eq. (2.21a) is specified as
c()—>0até— —o. 2.22)

Solution of the problem (2.21a), (2.22) is expressed in the form

3 .y 2
c(&) = gexp(ib& /2) | exp(i;c—ilfés—)ds. 2.23)

In typical cases, the unstable mode eigenvalue satisfies the following conditions near the

lower neutral branch:

dRe(a,)/dx, >0, dim(a,)/dx, <0.
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Then an asymptotic behavior of the amplitude coefficient c(£) as £ — +w is associated

with the saddle point s, = ¥ /b and evaluated using the steepest descent method as

3 . 2 o g2
c(5>—>q\/zl,—”7‘°vxp("2y—b+lbz§ ) at & — +wo. (2.24)

Analyzing asymptotic trends of the outer solution F., we conclude that its inner limit at
X, = X, +0 matches with the outer limit of the inner solution at £ — +c0; i.e. in the

resonance region, x, — x,, = O(¢'"?), the force wave excites the unstable normal wave of

the amplitude

) . 2 X
F = s'mq\f-zzﬂl exp(%/l-)-)An(xl, y)exp[is" Ian(xl )de:I for x; > x,,. (2.25)

10

This equation shows that the normal wave amplitude is proportional to (L/8)"* = R},
whereas the resonant region length is / =R‘L’ 25 . As the Reynolds number increases,
nonparallel effects (which disturb the resonance condition) decrease and the relative
length //6 increases. In the parallel mean-flow limit, R, — o, the resonance region is
infinitely large and the normal wave amplitude tends to infinity. In this case, the upper
limit of disturbance amplitude is determined by nonlinear effects. Both nonlinear and
nonparallel mechanisms of the resonance detuning can be observed simultaneously at
sufficiently large Reynolds numbers and strong forcing. Note that the expression (2.25) is
similar to that obtained by Tumin and Fedorov [23] for subsonic boundary layers using

another approach.

2.4 Local forcing

We consider a force disturbance, which is lccalized in a region comparable with the

boundary layer thickness. This may be a vibrator, suction/blowing induced through a hole
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(in three-dimensional case) or slot (in two-dimensional case), and temperature
perturbations induced by a heating element. In the general case, the force shape is

expressed in the vector form
¢= (u,v,H,w)TL,:o =g(x",2)py, X' =x~x, =6 (x, - %), 2' = z-zy, (2.26)

where ¢, is force amplitude vector, which does not depend on the local coordinates x’

and z'. However this vector is a function of the force type and mean-flow characteristics

at the central point (x,, z,) . Its explicit form will be given in Section 3.

The force shape vector-function is associated with the Fourier transform

pla.f)= |dz [de'g(x',z" Vexp(~iax' — i), 2.27)

and can be expressed as

¢=

(2)

g'2e ™~ jdﬂ Ip(ao +¢&"%y, B)exp(iyé +ifiz')dy . (2.28)

—o0

(27r)

For two-dimensional forcing of the shape g(x'), Equations (2.27) and (2.28) are reduced

to the form

pla)= [dx'g(x')exp(~iax’), (2:29)

7 =2¢—7°r fp(a)exp(iaxr)da =10 2 &2 gl J‘p(ao +8”2}’)6Xp(i7/§)d}/, (2.30)
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Using Eq. (2.25) we evaluate the normal-wave amplitude generated by force waves in the

wavenumber range (a, + &> (y +dy),f+dp) as

I q Zm l}/z 172 y ' '-\" ' v |, 8
dF, = J—— exp(——)p(a +&"%y, B)A,(x ,y;ﬂ)exp(z a, (x")dx ]e’” dydpf .
@z \V b 2b ° OI

(2.31)

Integrating over ¥ we get the following wave packet in the first order approximation

F = 1 J'qp(ao ,,B)Zn(x’,y;ﬂ) exp(i'_‘-a,,(x')dx’ + iﬂz’Jdﬂ . (2.32)
2z 0 _

For two-dimensional forcing specified by Egs. (2.29), (2.30), the normal wave amplitude

is expressed as
F, =gp(a, );1,,(x’,y)exp(i.ja,,(x')dx’). (2.33)
0

According to Eq. (2.21c) the receptivity factor g(x,,,2,) does not depend on the force
shape g(x',z’). If this factor is calculated once and for all, then we can evaluate the

normal wave amplitude induced by local forcing of any shape.

As contrasted to the case of distributed forcing (see Eq. (2.25)), local forcing generates
the boundary-layer normal waves of a finite amplitude even in the parallel mean flow
limit. This is due to the fact that only a small portion of the force spectrum,
(a-a,)=0(¢"), is involved into the resonance mechanism. As & — 0, the resonant
excitation increases proportionally to &2, whereas the spectrum region is narrowed
down proportionally to &"2. Because both trends compensate each other, the normal-

wave amplitude excited by local forcing tends to a finite value.

22




3. Numerical results

3.1 Computational algorithm for receptivity to local forcing

Summarizing results of Section 2 we formulate the following algorithm for calculations

of the normal-wave amplitude generated by local wall forcing:

1. Specify the function ¢(x’,z') defined by Eq. (2.26), where the vector @, depends on
a forcing type. For vibrations, it is expressed as
@y =(U'"in,T",0)", 3.1)

Fy=0x=xy9 2

where prime denotes the partial derifative &/ &) . In this case, the force shape function

g(x',z") corresponds to the wall displacement amplitude.

For suction-blowing inducing a vertical velocity on the body surface, we obtain

@, =(0,1,0,0)". (3.2)

In this case, the function g(x’,z’) determines the vertical velocity amplitude.

For temperature perturbations on the wall surface, we get

@, =(0,0,1,0)". | (3.3)

In this case, the function g(x',z’) determines the surface temperature amplitude.

2. Solve direct and conjugate eigenvalue problems at the central point x, = x,, of the

force element and calculate the normal-wave eigenvalue «, =«,(x,,8,®) and

eigenfunctions 4,(»), B,(y). This can be done using a standard stability code.
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3. Calculate the receptivity factor g(x,,,,,8,®) using Eq. (2.21¢).

4. Evaluate the normal-wave amplitude f’n using Eq. (2.32) for three-dimensional

forcing or Eq. (2.33) for two-dimensional forcing.

This algorithm was integrated in a computationally non-intensive module, which was
coupled with a standard stability code. This module works as a black box and predicts

initial amplitudes of unstable normal waves induced by wall forcing of prescribed shape.

3.2 Numerical results
Calculations have been conducted for the Mack second-mode induced by a two-

dimensional local forcing. For surface vibrations, the shape vector-function @, is

determined from Eq. (3.1). The disturbance amplitude is characterized by the mass-flux

perturbation evaluated at the point of its maximum: y = y,, . This quantity is expressed as

O(x10,¥m) =| (@) | Gy » (.4)

where Fourier component p() is determined from Eq. (2.29); the receptivity function

for local vibrations is calculated using Egs. (2.20d), (2.21c), (2.33) and (3.1) as

(UB,, +iwB,; +T'B,5) ..
Gl'ib (xlo ’aO ) = Q2 (ym 9x|0 } 2.1 23 2.5/ p=0.x,
<0"H0

ox

Xio

(x50, )22’32> ‘

3.5)

This function characterizes the mass-flux amplitude of the normal wave generated by a

vibrator with the unit Fourier component p(e,)=1; Q,(y,,X,,) is mass flux disturbance

evaluated using the second-mode eigenfunction A, . For the boundary layer on a flat

plate, the length scale is determined as §=4/v,x, /U, , and the Reynolds number is
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R=,/U.x, /v, . If the receptivity function G,, is known, then we can calculate the

initial amplitude of the second-mode wave generated by a vibrator of arbitrary shape
using Egs. (3.4) and (2.33).

In a similar way, we evaluate receptivity to suction-blowing through a two-dimensional

slot. The mass-flux perturbation is expressed in the form

Q(xm,ym ) =I p(ao ) | Gs > (3.6)

where the receptivity function is determined from Egs. (2.20d), (2.21c), (2.33) and (3.2)

as

(B2.3 ).V=0~-"1 =X19 |

H (3.7
: (X0, );‘iz ,E2>

G, (X10,a0) = |0y (Vs X0)
< oo

The mass-flux disturbance excited by surface temperature perturbations is expressed in

the form

O(xy9,¥,,) =l play) |Gy, (3.8

where the receptivity function is determined from Egs. (2.20d), (2.21c¢), (2.33) and (3.3)

as

(BZ‘S )_v:O,.\'l =Xy ‘

JH - =
_0,,_0”(3‘10,“0 )4, ’Bz>}
(04

Gy(xy,ay)= Qz(ym’xlo)< (3.9
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Case 1: Cooled wall

Calculations of the receptivity functions G,,, G, and G, versus the Reynolds number

R=+Ux; /v, have been made for the following mean flow parameters: local Mach

number M, =595, freestream temperature T' =702578 K, wall temperature ratio

4

T /T =069539 corresponding to the ratio T,/T, =01, specific heat ratio

c, /¢, =14, Prandtl number Pr=0.72, second viscosity coefficient k = 1.2. Disturbance

frequency parameter is F = 10™. As shown in [21] the discrete spectrum has a singular
topology in this case. First and second modes have the branch points R,; and R;, located

near the lower and upper neutral branch respectively. The first branch point is very close
to the real axis of complex R-plane. The second branch point is slightly shifted from the
real axis. In the vicinity of the branch points, the eigenvalue spectrum splits as shown in

Figs. 3a and 3b (see also Figs. 14a of Ref. [21] for a conical boundary layer).

Figures 4a, 4b, 4c and 4d show the second-mode wave increment ¢, = ~Ima,(R) and
the receptivity function G,,(R), G,(R) and G,(R) respectively. It is seen that the
receptivity functions have a sharp peak at the Reynolds number R~ R, . As shown in

[21], the scalar product has the following trend near the branch point

<66H° 2,,,1?,,>—>0 as R>R,,n=12. (3.10)
a

According to Egs. (3.5), (3.7) and (3.9) the receptivity functions tend to infinity as
R — R,,. Second maximum of G,,(R), G,(R) and G,(R) is observed at the Reynolds
number R ~ 2500, which is close to the second branch point R,,. Because the point R,,

is shifted to the complex R -plane this maximum is smaller and smoothed out.
Comparing data in Figs. 4b-4d we conclude that receptivity to suction-blowing is several
times higher than receptivity to vibrations. In turn, receptivity to vibrations is several

times higher than receptivity to temperature perturbations.
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Figures 5a, 5b, 5¢c and 5d show distributions of -a,(R), G,,(R), G,(R) and G,(R) at
various frequency parameters F. The highest peak of the receptivity function corresponds

to Curve 3 at F =107. In this case, the first branch point R, is very close to the real axis

of the complex R -plane as shown in Fig. 6. For the frequency parameter F <10™, the
first branch point is located in the upper half of the complex R-plane (Points 4 and 5 in
Fig. 6). As the Reynolds number increases along the real axis, this branch point is
bypassed from the lower side. The first mode (with the phase speed behavior

¢ —>1+1/M, as R decreases) becomes unstable. In this case, the phase speed crosses the

ray c¢=1 that causes discontinuity of the receptivity function. For the frequency
parameter F > 107, the branch point is in the lower half of the complex R-plane (Points
3,2 and 1 in Fig. 6). As the Reynolds number increases along the real axis, this branch
point is bypassed from the upper side. The second mode (with the phase speed behavior
c—1-1/ M, as R decreases) becomes unstable. Note that both cases correspond to the

second-mode instability in terms of Mack’s classification.

Figure 7a shows that the receptivity-function maximum, G, = max[G,, (R)], is close

to the lower neutral branch. Figures 7b and 7c illustrate that the function G, (F) has a

vib,m
sharp peak at the frequency F =10 corresponding to a singular case when the branch
point crosses the real axis (see Point 3 in Fig. 7c). The receptivity functions for suction-

blowing perturbations, G, and temperature perturbations, G, , have similar behavior.

Summarizing we conclude that hypersonic boundary-layer on a cooled plate is very
sensitive to the vertical velocity perturbations, if they are in resonance with boundary-
layer modes. Such perturbations may be induced by suction-blowing through a hole or by
skin vibrations. Receptivity to temperature perturbations is relatively low. The receptivity
level strongly depends on the forcing locus. The receptivity functions have a sharp peak

in the vicinity of the branch point R,,. This peak is observed near the lower neutral
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branch of the second mode. Singular behavior of the receptivity functions near the point

R,, indicates that the foregoing theoretical model should be revised in this case.

Case 2: Adiabatic wall

Figures 8a and 8b show the eigenvalue distribution of the second and first modes for the
adiabatic plate, T = T,, at the Mach number M, = 68. The freestream temperature is
T' =702578 K, specific heat ratio is y =14, Prandtl number is Pr=0.72, second
viscosity coefficient is k =12, and disturbance frequency parameter is F = 107, It is
seen that the functions @,(R) and a,(R) are smoother compared with the cooled wall

case shown in Figs. 3a and 3b. This is due to the fact that the spectrum branch points are

shifted from the real axis to the complex R -plane as shown in Fig. 11.

Figures 9a and 9b show the second-mode increment, —a; =-Ima,(R), and the
receptivity functions G,,(R), G,(R) and G,(R) respectively. Because the first branch
point R,, is far from the vibrator center point R (see Point 2 in Fig. 11), receptivity

peaks are smoothed out. Nevertheless the receptivity function maximums are still

observed near the lower neutral branch.

Figures 10a, 10b, 10c and 10d show distributions of -a,(R), G,;(R),G,(R) and
G,(R) at various frequency parameters F. Imaginary part of the branch point is negative,
Im(R,) <0, for all frequencies considered (see Fig. 11). As the Reynolds number
increases along the real axis, the first branch point is bypassed from the upper side. The
second mode (with the phase speed ¢ — 1-1/ M, as R decreases) becomes unstable.
Because the second-mode phase speed is less than 1, there is no discontinuity of the
receptivity functions as contrasted to the cooled-wall case shown in Figures 5b, 5¢ and 5d

(Curves 4 and 5).
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Similar to the cooled plate case, the hypersonic boundary layer is most sensitive to
vertical velocity perturbations, if they are in resonance with boundary-layer modes.

Receptivity to the surface temperature perturbation is relatively low.

Estimates of receptivity effectiveness

To estimate the receptivity effectiveness we consider a two-dimensional vibrator of the

shape

Oatx'<-1/2,x'>1/2

) 3.11
aat-1/2<x'<1/2 G.11)

g(x’)={

where a and [/ is nondimensional amplitude and streamwise length of the vibrator

respectively; their dimensional values are expressed as a’ =ayx,v./U. and

I'=1x,v,/U, ; x, is dimensional coordinate of the vibrator center, which

corresponds to x’ = 0. Fourier transform of the shape function (3.11) is expressed in the

form

2 2a .
pla)= J.g(x')exp(—iax')dx'=—asm(al/2). (3.12)
o a
For the resonant wavenumber a = «, the module |p(a,)| attains its maximum value

Ip(ao)l=£a— at l=2—”(n+l), n=0,1,2,.. (3.13)
a, a 2

0

Then, in accordance with Eq. (3.4), the second-mode wave amplitude is evaluated as

2a
Q(xloaym)z'a_'va' (3.14)

0
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For the adiabatic flat plate, maximum value of the receptivity function is G,;, ~5- 107 at
the frequency parameter F = 10 and Mach number M, =68 (see Fig. 9b); the

resonance wavenumber is ¢, = 0.097 ~ 0.1 (see Fig. 9a). In this case, the vibrator of
amplitude a" =~ 0.0IM induces the second-mode wave of initial amplitude
0, (x,,a,) = 0.1%. For a typical hypersonic wind tunnel with the unit Reynolds number
Re, =107 1/m, such a vibrator has the amplitude @’ =10 m and length I' ~3 mm, if

it is located near the lower neutral branch point x* ~ 0.1 m.

Note that the highest receptivity occurs near the low neutral branch. Normal waves
generated in this region become unstable immediately behind the force element and can
achieve critical amplitudes earlier than those generated by other external disturbances far

from the neutral branch.

4. Receptivity near the spectrum branch point

In Sections 2 and 3, we found that the receptivity function tends to infinity as the
resonance point tends to the branch point. This singularity indicates that the receptivity

model developed in Section 2 should be revised in the branch point vicinity.

In this Section, we analyze the distributed excitation of the second-mode wave by force
waves when the resonance point tends to the branch point. Then we consider the

instability excitation produced by a local force element placed near the branch point.

4.1 Spectrum behavior
We briefly discuss the discrete spectrum behavior in the branch-point vicinity. We

assume that two modes, say Mode 1 and Mode 2, coincide at the branch point x, =x,,;

ie a(x,)=0a,(x,)=a, As shown in [13] and [21], such branching is typical for
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hypersonic boundary layers, when the first mode (Tollmien-Schlichting wave) and the
Mack second mode coexist. Near the branch-point, eigenvalues of Modes 1 and 2 are

expanded as
a, =a, Lidx —x, +..., (4.1a)

Hereafter the subscript » denotes quantities at the first branch point located near the

lower neutral branch.

Analysis of numerical examples shown in Figs. 3a, 3.b and 8a, 8b indicates that

lIm(4)|<<|Re(4)|; i.e. Modes 1 and 2 are almost neutral upstream from the branch

point. For simplicity we consider the case when the parameters A and x,, are real and

positive. For x, < x,, , the eigenvalues are determined as

Qy =y FAJx, — X, +... (4.1b)
Equation (4.1b) shows that Mode 1 has smaller wavenumber (larger phase speed) than
Mode 2 in the upstream region x, <Xx,,. If the branch point is bypassed from the

upper side, then

a, =a, tid\x —x, +... for x, > x,, (4.1c)

In this case,vMode 1 is stable (Im(e,)>0) and Mode 2 is unstable (Im(a,)<0)

downstream from the branch point.

If the branch point is bypassed from the lower side, then

a,, =a, Fid\x, —x, +... for x, >x,, (4.1d)
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In this case, Mode 1 is unstable (Im(a,)<0) and Mode 2 is stable (Im(z,)>0)

downstream from the branch point. Note that in both cases the unstable mode is
Mack’s second mode. Without loss of generality we consider the second case

assuming that Mode 1 is unstable downstream from the branch point x,, and the

eigenvalue behavior is determined by Eqs. (4.1a), (4.1b) and (4.1d).

As the streamwise coordinate x, tends to the branch point, Mode 1 strongly interacts

with Mode 2 due to nonparallel effects. This interaction can be described by the two-
mode approximation; i.e. the disturbance amplitude from (2.4) is expressed in the
form

F(xl ,y)=¢(x, )‘Zl('xl ,y)exp(g"iSl )+ e (x )"—4‘2 (xlay)exp(gﬂlisz ), (4.2)

Sy = Ial.z (x,)dx, .

b

As shown in Ref. [21], the amplitude coefficients c,,(x,) are solutions of the ODE

problem

de,

'(Z‘C"—'CII’VH +c,W,, exple 'i(S, - S,)], (4.3a)
1
di
Zi‘g‘ =c,Wy, + W), exple”'i(S, - S,)]. (4.3b)
1
cl (xls ) = cls 2 CZ(‘xls ) = cZ: > (4‘30)

where ¢, and c,, are prescribed values at a certain initial point x,; the matrix

elements are defined as

<Bj,a:{° %>+i<gj,H1%>
a Ox, 0x, )
W, =- , =12, k=12. (4.4)

5 OH, 04
7 da ox,
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Fedorov and Khokhlov [13], [21] showed that the matrix elements behave as

(_l)j+k-l

Sy X, > X,
ke > 1 1b
! 4(x; —x)

That leads to the following singularity of the amplitude coefficients

(%)) = e 7 +...85 X, > X, 4.5)

where constants C,, depend on the normalization of eigenfunctions ;11‘2( x,,y) . Note
that this singularity is totally determined by the spectrum topology prescribed by Eq.
(4.1a). In the first-order approximation, the functions ¢,,(x,) have a universal form

in the branch-point vicinity; they do not depend on mean-flow characteristics and

disturbance parameters.

In the region, x, —x,, =0(&**), the mode decomposition (4.2) is not valid.

=213
(

Introducing the inner variable ¢ =¢&"""(x; —x,,), we can express the local

disturbance field in the form
F=e"[cy(O)A,(y)+ &2 cy () Ay (v) +.. Jexp(ie™ S, +is e, (), (4.6)

where ¢,(&) is solution of Airy equation

d’c
2ot R4 =0, @)

Fedorov and Khokhlov [13], [21] matched solutions of Eq. (4.7) with the normal-
mode expansions of the outer solution and established an exchange rule for Modes 1

and 2 in the branch-point vicinity.
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In the case of real and positive A and x,,, a structure of the branch-point influence
domain is shown in Fig. 12. It includes three Stokes lines along which the modes are
neutral. Within the sector containing the axis portion x, > x,,, Mode 1 is unstable and

Mode 2 is stable, if the branch point is bypassed from the lower side. In accordance
with (4.5) and (4.6), the disturbance amplitude has a peak in the influence domain,
with maximum amplitude being of the order of £"°. In order to separate this effect
from the receptivity mechanism, we need to establish a relationship between the

constants C,, (instead of the amplitude coefficients c,,) and the external force

characteristics.

4.2 Distributed receptivity

Outer solution

We consider wall perturbations in the traveling-wave form given by Eq. (2.2). If the

resonance point x,, (where the force wavenumber a coincides with the unstable
mode eigenvalue a, =a,(x,,)) is far from the branch point x,,, then the normal

wave amplitude F, is given by Eq. (2.25). In the absence of resonance detuning

(y =0), this equation is expressed as

- m- o
F=¢ 'lzqwf—bﬁl—Al(pr’)exp[w ] Ial(xl )dxx} Xy > X5 (4.8)

X10

where b and g are defined by Egs. (2.21b) and (2.21c) respectively. Differentiating
Eq. (2.10a) with respect to x, and imposing the solvability condition on the resulting

equation we obtain

. OH -
da <Bofa—0(x10»ao )Ao>
b=——t(x,)=- :

- OH -\
I <BOa—0(x|o’ao)Ao>
oo

(4.9)

34




Using this relation we write Eq. (4.8) as

10

, ~i)®y,By) 0 -
F, =¢&™"*\[27ib ( 81)1(7 o2 Bo) e Al(xl,y)expliie" .fal(xl )dxlil, X, > Xy
<§0’ (%1052 )Ao>
Ox

1

(4.10)

If the resonance point tends to the branch point as x,, — x,, + 0, the eigenvalue

derivative b is expressed from Eq. (4.1a) in the form
s /1 -172 . .
b—zz(xlo—x,b) +... (4.11)

Substituting (4.11) into (4.10) we get in the first order approximation

F "‘8_”2 ‘ ‘Vﬂﬂ« (éo QBO )y=0
1= 1/4
- = OH -
(xlo xlb) <B0, 0 (xm’ao )Ao
Ox

1

o

> A(x,,) exp{ia" .J‘al (x, )dx, } ,

X, >X,- (4.12)

Comparing (4.12) with (4.2) and (4.5) we express the amplitude coefficient of the
unstable Mode 1 in the form

(&)O’BO )_v=0

- OH -
<Bm : (x>, )Ao>
ox

C, =8—”2m

as X,) = Xy, (4.13)

Equation (4.13) shows that distributed receptivity has no singularity at the spectrum
branch point. In accordance with Eq. (4.5), the disturbance peak is totally due to a
singular behavior of the unstable mode itself. If one measures the disturbance

amplitude Q at a certain fixed point downstream from the branch point for various

locations of the resonant point x,,, then he will not observe a peak in the distribution
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Q(x,,) at the point x,, = x,,. However, the function Q(x,,) will have a maximum at

the lower neutral branch because of a different amplification history associated with

the exponential term in Eq. (4.2). Since the branch point x,, is close to the lower

neutral branch, this maximum will be observed at x,, = x;, .

Inner solution
We assume that the forcing wavenumber « satisfies the resonance condition near the
branch point; ie. a=a,+¢&"’y. Here the parameter y = O(l) characterizes

resonance detuning. In the branch-point vicinity, the disturbance field is represented in

the form
F=[ec,(O)A,(p)+ & Pcoy (&) (9) +... + A, (L, y)]explis™ @, ) . (4.14)

Eigenfunction /—ib( y) is a solution of the homogeneous problem (2.10). In turn, the

function A,,(y) is a solution of the equation
7 - CH -
S H(x,,,a,) |4y ——>(x,,,a,)4, =0. 4.15)
1% oo

Substituting the expansion (4.14) into Egs. (2.5)-(2.7) we obtain

1% - .de, 6H -
(-ﬁ; -Hy(x,,a, )Jcon1 + zgé%—%—"—(x,b,ab )4, =0. (4.16)

From Egs. (4.15) and (4.16) we derive the relationship
cu(§)=—i=E. 4.17)

Expanding the matrix H|, in the vicinity of x,, we obtain the following problem for

the forcing term 4,
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] -~ d%,|10*H
(—'—Ho(x,,,,ab)jAr { 0(x,,,,oz,,)A +

& dg?
oH - JH -
—'Zz—o—(xlb’ab )Am}_cbga'li(xlbaaé )Ab =0, (4183.)
(A ) 1357 =Prasa(xy)exp(iyd)at y =0, (4.18b)

|4 > 0aty - w. (4.18¢)

Using a standard approach (see for example [28]) we can express the problem (4.18)

in the form

& o d,[15°H _
[5‘1{ (xlb1ab)]A +® »A(p)e™ + d{ I:z e 20 (X, )4, +
JH - OH -
Ef(x””ab )Amjl—c,,é’gx—"—(xlb,ab )4, =0, (4.192)
i
(Av)1,3,5,7 =0 aty = 0, (4.19b)
|4,| > 0aty > . (4.19¢)

Solution of this problem is not trivial, if the inhomogeneous term of Eq. (4.19a) is
orthogonal to the eigenfunction I§b( y) of the conjugate problem. This solvability

condition leads to the following equation for the amplitude coefficient ¢, ()

d*c

dg; - Xle, +Ge™ =0, (4.20a)
3, %3
A2 ad b 4.20b
1/. &°H, - - oH, -\ (4.200)
—( B,, 20 5 ) (B, 0Ao1
2 1704 R oo b
~ (Bb’&)b)mo
qg= 1 <_ S pes (4.20¢)
—(B,, °A,,> +<B,,, ° 4 >
2 oot s o b
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If normal waves have zero amplitude in the upstream region, ie. c,(¢)—>0 at

£ — —oo, then solution of Eq. (4.20a) is expressed as

~

¢, =— j[Az(s)Bz(s )= Bi(s)Ai(s")exp(iyA2"s")ds', s = #1°¢ , (4.21)

2’4/3

where Ai(s) and Bi(s) are Airy functions [29]. For the brahch-point influence
domain structure shown in Fig. 12, we obtain the following asymptotic expressions in

the limit § — +©

Az(s)—)\[_”4 exp(—gs ) Bz(s)—-)\/_ — exp(2 ), (4.22a)
V7§

€ > ST it exp(3 3“)1, I=EAi(s)exp(i/1'2'3ys)ds. (4.22b)
Using the integral form of Airy function

Ai(s) = —Z%izexp(ius +iu® [3)du, (4.23)
we can evaluate (4.22b) as

1=—2-1— jahuexp(iu3 /3) jexp(ius +il 3 ys)ds =exp(=id2y* 13).  (4.24)
T e 0

Summarizing we conclude that in the branch-point vicinity, x, —x,, = 0(e*"”), the

force wave excites the unstable normal wave of the amplitude

- _ ~J; X )
F=¢ 12 /13’2(xq o exp| — ;/12 A (x,,y)exp| € Izal(xl )dx, |, (4.25)
1 16

N1p

e << x, ~x,, <<1.
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From Egs. (4.20b), (4.20c) we get

(By,®s) e ) (4.26)

- OH -
<Bb ’”’0:;9‘ (x5, )Ab>

1

g _
2

Substituting (4.26) into (4.25) we obtain the following expression for the amplitude

coefficientat ¥ =0

®,,B,)..
C =c"Jmi ;Hb )y . (4.27)
<Bb’go_(xlb’ab)‘4b>

Comparing (4.13) with (4.27) we conclude that, in the first order approximation, the
inner and outer solutions lead to identical expressions for the amplitude coefficient of

unstable normal wave.

4.3 Local receptivity

Now we consider a local force element with. the shape function determined by Eq.
(2.26). We will analyze receptivity as a function of the distance between the forcing

element and the branch point x,, .

Outer solution
If a three-dimensional force element is far from the branch point x,,, then the

amplitude ﬁ; of unstable wave-packet generated by this element is given by Eq.

(2.32). Two-dimensional forcing element excites a normal wave of the amplitude

(2.33). Using the expression (2.21c) for g, the relation (4.9) for the eigenvalue

derivative and the eigenvalue expansion (4.1a) we obtain the following approximation

for g
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®,,B,),.
- ( 0 0 )}—0 ﬂ'p(ao) as xlO — xlb . (4.28)

. O0H -\ 20x,, = x,, )2
<Bo,_°_(xm,a0 )A0> (%10 1)
ox

1

Then the amplitude coefficient from Eq. (4.5) is expressed in the branch point vicinity

as

®,.B,),.
C = CoBo)mo 200%0) oo x, (429

1 4
~ O0H -\ 2>x,, —x,,)"
<Bo, 0 (xlo:ao)A0> 10 1
ox

~1/4

Local receptivity increases proportionally to (x,, —x,,)” , as the force locus tends to

the branch point. This effect is due to the increase of the force wavenumber range
involved into the excitation process. In fact, asymptotic expansions are controlled by
the parameter £/b. If the forcing element is far from the branch point, then the
eigenvalue derivative b=0(l), and the wavenumber range is estimated as
(a—a,)=0(&"?). As the forcing element tends to the branch point, the derivative b
tends to infinity in accordance with Eq. (4.11). If the force element is placed in the

region (x,, —x,,)=0(¢*"*), then the wavenumber range becomes of the order of
(a—a,)=0(¢""). In this case, Eq. (4.29) indicates that the amplitude coefficient is

of the order of C, =0(&™'¢).

Inner solution
We consider a force element placed in the branch-point influence domain, ie.

(x,, — X, )= O0(£2"*). According to Eq. (4.25) the normal wave amplitude generated
10 1b

1/3

by the forcing wave components a, +¢& (¥ +dy) and f+dp is expressed as

|

1 g iy’ y
= (27r)? e /13/2(: = x)"* exp(— ﬁ—{)p(ab +£'%y, B) A (xy, ) x
1 16
2{ _ 372 .
exp(ia,,s+§———-—(x1 gx'b) Je'ﬂz dydp . (4.30)
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Integrating over ¥ and £ we obtain in the first order approximation

] a _ 312
F=¢ S JA4,(x,,y; B)exp(ipz')exp iang(xl %) \ip
ol A (x, = x,) 3 £

4.31)

where the integral J is evaluated as

3

J=TP(% +8”37,ﬂ)exp(—i3—7/-1; }’=%p(ab,,8)(3/12)”31"(1/3), 432)

where Gamma-function is I'(1/3)=2.678938...

In the case of a two-dimensional forcing, the integral (4.31) can be expressed in the

compact form

= - Ap(a, )T(1/3) (ﬂjw (§b>&)b)1'=0 - N
F =g b = = A(x,,y)exp| i |a,(x,)dx, |,
1 2\/;()61 - X, )1/4 3 <§b,aH0 2b> 1\ x:[ 1\ I
ox, s

(4.33)

where £>* <<x, - x,, <<1. From this expression and Eq. (4.5) we obtain the

following amplitude coefficient

176 D M
c,:(-’l—J Ap(a,)(1/3) (B, ®y),0 @34)

3¢ N <- aH->'

Bb’?@C_OAb

1

Summarizing we conclude that local receptivity strongly depends on a distance

between the forcing element and the branch point. As x,, — x,,, the amplitude

coefficient C, increases proportionally to |x10 —xlbl_w (in accordance with Eq.

41




¢ at the point x,, = x,, (in

(4.29)) and attains its maximum value of the order of &
accordance with Eq. (4.34)). If one measures the disturbance amplitude Q ata certain
fixed point x,, downstream from the branch point for various locations of the forcing
clement, then he will observe a local peak in the distribution Q(x,,) at the point
X,, = X,,, Which is close to the lower neutral branch. This peak will be enhanced by

the maximum of Q(x,,) due to the amplification history in the region x;, <x; <X

associated with the exponential term in Eq. (4.2). Such an experiment may be
conducted on a cooled flat plate at the Mach number, wall temperature ratio and
disturbance frequency corresponding to the case when the spectrum branch point is

close to the real axis. For example, Fig. 4c shows such a regime at M, =595,

T, IT,, =0.1 and frequency parameter F =107* (see Point 3).

4.4 Results

We consider excitation of Mack’s second mode by two-dimensional local forcing. As
discussed in Subsection 3.3, this mode may be Mode 1 or Mode 2 depending on the
branch-point bypass. For a force element located far from the branch point, the

receptivity functions G,,, G,, and G, are determined by Egs. (3.5), (3.7) and (3.9)
respectively. If the force element is close to the branch point, £°* <<|x,, —x,,| <<1,

then the amplitude coefficient is determined by Eq. (4.29).

In order to separate the receptivity mechanism from the mode singularity at the branch

point, we normalize the receptivity function as

G (X195 X1y @ ) = G( X105 X1, )}xno _xlbrM . (4.35)

Using Eq. (4.29) we obtain the following expressions for the receptivity functions in
the region £’ <<|x; — x,,| <<1:

for vibrations
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(UB,, +iwB,; +T'B,;), , A

G (%1,2,)=|Qy (¥} |, (4.36a)
! oH -~ = 2(x,y —x,,)""*
<7ﬂc_lo(xlb’ab )Ab>Bb> 10 16
for suction-blowing through a slot
— (Bys),- A l
G, (%15,2,)=|0, (V) e 1 (4.36b)
0 - 3\ 2xp —x;,)
a’l_(xlb’ab )4, B,
for surface temperature perturbation
B _
Bos)rmg A : (4.36c)

ge(xlb’ab)= (Y )< >2(x X,)'"
= 107 i

?lo(xw ' &y )/—11; B,

Here subscript “b” denotes quantities at the branch point where Mode 1 and Mode 2

have identical eigenvalues and eigenfunctions.

If a force element is placed at the branch point, x,, = x,,, then we get from Eq. (4.34):

for vibrations

= (UB,, +iwB,; +TB,5), 0., A )¢
G.,(x,.a,)= X1 ) . ' 2 LA ran)—| |,
‘. o (X5 @) =Dy (1,5%) < > 2«/; ( )[38)

"0.,7]0(xlhaab )‘Zb’Bb

(4.37a)

for suction-blowing

(Bb.S )y=0

<“0.,x_0(x1b:ab );Ib ’Eb

1

_ 1 1 176
Gi(x,a,) =104 (¥,,) >2\/;r(1/3)(§) , (4.37b)

for surface temperature perturbation
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(Bys),-0

(X555 )45, B,

2H,

1

E;“g(x.,,,a,,)=Q,,(ym)< >2j;r(1/3)(§'1;) . (4.37¢)

We determine the global length scale as L=Re(x,). Then the branch-point
coordinate is x,, =1, and x, =(R/R,)?. Receptivity functions G, G, and G,
have been calculated in the branch point vicinity at the following parameters: local

Mach number M, =5.95, flow temperature T, =70.2578 K, wall temperature ratio

T, /T, = 069539, specific heat ratio ¢,/c, =14, Prandtl number Pr=0.72, and

second viscosity coefficient k=12. These parameters correspond to the case

considered in Section 3 and illustrated in Figure 3.

Figures 13a-13e show the receptivity function G,,(x,,) near the branch point x,, =1

for the frequency parameter F x10* =0.6, 0.8, 1.0, 1.2, and 1.4 respectively. Dotted
line shows the function G,,(x,,) calculated using the outer solution given by Eq.
(3.5); solid line with square symbols shows the asymptotic behavior determined by
Eq. (4.362); open circle shows the quantity G,,(x, =x,) given by Eq. (4.37a).
Figures 13a and 13b correspond to the case when the branch point is slightly shifted to
the lower half of the complex x,-plain (see Points 1, 2 in Fig. 6). Figure 13c
illustrates the case when the branch point is very close to the real axis (see Point 3 in
Fig. 6). Figures 1d and le show the case when the branch point is slightly shifted to
the upper half of the complex X, -plain (see Points 4, 5 in Fig. 6).

In all cases under consideration, the imaginary part of the branch point is much

smaller than its real part; i.e. the real axis crosses the branch-point influence domain

x, — X, =0(&*"?) schematically shown in Fig. 12. Because the parameter 1 is

relatively small (its value is about 2.5x107?), the asymptotic parameter (1/¢)"°,

which actually controls the receptivity maximum given by Eq. (4.37a), is not very
large. Itis (A/£)"® ~4.3 at the frequency parameter F=6x107 and (1/¢)"¢ 3.2
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at F=1.4x107*. This explains relatively low value of G, (x,, = x,, ), which restricts

receptivity peaks at the branch point. Similar reasoning helps to explain the difference
between asymptotic curves (solid lines with square symbols) and actual behavior of
the outer solution (dotted lines). Nevertheless our asymptotic model captures basic
features of the branch-point effect and allows us to estimate receptivity peaks in the

branch-point vicinity.

Figure 14 shows the receptivity maximum G(x,,=x,) versus the frequency
parameter for suction-blowing through a two-dimensional slot, G = G, (x,, = x,,);
for vibrations, G =G, (x,=x,); and surface temperature perturbations,
G =G,(x,, =x,,) . Similar to the case of regular receptivity shown in Fig. 9b (where

the force element is far from the branch point), suction-blowing is the most effective
source of instability excitation in the branch-point vicinity. Receptivity to temperature
perturbations is essentially lower than that to vibrations and suction-blowing. Similar
conclusions can be made using distributions of the receptivity maximum with respect

to the branch-point locus Re(R, ) shown in Fig. 15.

5. Estimates of critical vibrations for bypass

Sufficiently strong forcing is able to generate such a high level of local disturbances
in the excitation region that nonlinear mechanisms can cause early breakdown to
turbulence. In this case, the linear stability phase is bypassed and the transition onset
occurs just behind the forcing element. To estimate the force level providing bypass

we assume that the excitation mechanism is linear up to the critical amplitude Q  of

normal waves.

5.1 Local vibrations

We consider a two-dimensional vibrator of the shape given by Eq. (3.11). Its Fourier

transform is determined from Eq. (3.12). For the resonant wavenumber @ =q,, the

module of Fourier component p(e, ) is given by Eq. (3.13).
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If the vibrator is far from the branch point, then we can use the results of Section 3. In

accordance with Eq. (3.14), the vibrator amplitude providing critical level of mass-

flux disturbance Q,, in the excitation region (x, — X,,)=0(¢'?) is estimated as

(24
a,(x) z———2°GQ" : (5.1)
vib

where G, is determined by Eq. (3.5).
If the vibrator is placed at the branch point, then we can use the results of Section 4.

The critical vibrator amplitude in the excitation region (x, —x,)=0(g*’) is

estimated as

1 1/6 a,0.,
aa(xlb)z(—g—) ———2”5Q , (5.2)
vib

where G, is given by Eq. (4.37a).

For definiteness, we assume that bypass occurs at O >Q_ =1%. Using this criterion

we calculated the critical amplitude a, as a function of the vibration locus x,

expressed in terms of the Reynolds number R = x,U. 1V, .

Figure 16 shows the distribution a,,(R) for adiabatic flat plate at Mach number

M, =6.8; mean-flow parameters correspond to the case shown in Figures 10a and

10b; nondimensional frequency parameter is F x10* =0.6, 0.8 and 1.4. Since the
branch point is relatively far from the real axis, calculations were conducted using Eq.

(5.1). Minimum of the function a,(R) corresponds to the region of maximum

receptivity (see Fig. 10b). It is close to the lower neutral branch. Minimum value of

a,, (R) is slowly decreases as the vibrator frequency decreases. For the unit Reynolds

number Re, =U. /v, =10° 1/ft and frequency parameter F=08x107, the

dimensional critical amplitude is estimated as a,, = a,,/v,x" /U, ~0.001 inch.
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Figure 17 shows the distribution a,(R,) for cooled flat plate at Mach number

M, =5.95; mean-flow parameters correspond to the case shown in Figures 14 and
15. Because the branch point is close to the real axis, calculations were conducted
using Eq. (5.2). Due to high receptivity in the branch-point vicinity the
nondimensional critical amplitude is essentially lower than in the previous case. For

the unit Reynolds number Re, =U, /v, =10° 1/ft and frequency parameter

F =0.8x10™, the dimensional critical amplitude is estimated as a_. ~0.0007 inch.

These examples show that local vibrations of the resonance frequency are effective
sources of boundary layer tripping. If vibrations are equally available allover the plate
surface, initial amplitudes of unstable normal waves are maximal near the lower

neutral branch.

5.2 Distributed vibrations

If the vibration spectrum contains discrete components, then the receptivity level may
be essentially higher and the critical amplitude may be much smaller than in the case
of local vibrations. This situation may occur when one of discrete modes of skin

structure vibrations is in resonance with the boundary-layer modes.

If the resonance point is far from the branch point, then the critical amplitude of the

vibrational mode is evaluated from Eq. (2.25) as

0, ~Le [f‘ij , (53)

where b and G, are given by Egs. (2.21b) and (3.5) respectively. Using Eq. (4.9) we

can express the critical amplitude in the explicit form

a, ~ 2 (ij , (5.4)
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(UB,, +iwB,; +T'By5) .0,
Eri (x 3a = ( m"x ) . . —
p (X105@0) = Q2 (¥, %10 ) <0”H0

Py (xlo’ao)/—lz’gz> ’

1

=X|p

If the resonance point coincides with the branch point, then the mass-flux disturbance

amplitude is estimated from Egs. (4.14) and (4.21) as

0 zg'ma%Qz(ym,x,b). (5.5)
Using Eq. (4.26) we obtain
£ -2/3
O~ (—/{) ak ,(x,), (5.6)

(UB,, +ioB,; +T'B,5),0.4-x, |

e
b

1

E (%) =70y ( Y, X15)

Then the critical amplitude of the vibrational mode is estimated as

£ 2/3 QC,
(5wt =7

Figure 18 shows the distribution a,(R) evaluated from Eq. (5.4) for adiabatic flat
plate at Mach number M, = 6.8 ; mean-flow parameters correspond to the case shown

in Figures 10a and 10b; the frequency parameter is F x10*=0.6, 0.8 and 1.4.
Comparing these data with the distributions shown in Fig. 16 we conclude that the

critical amplitude of the vibrational discrete mode is much less than that of the local

vibrator. For the unit Reynolds number Re, =U, /v, =10° 1/ft and frequency
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parameter F =0.8x107, the dimensional critical amplitude is estimated as a, =

a,v.x" 1U; =6.6x10™ inch.

Figure 19 shows the distribution a,(R,) for cooled flat plate at Mach number
M, =5.95; mean-flow parameters correspond to the case shown in Figures 14 and
15. Because the branch point is close to the real axis, calculations were conducted
using Eq. (5.7). Nondimensional critical amplitudes are essentially lower than in the

previous case. For the unit Reynolds number Re, =U. /v, =10° 1/ft and frequency

parameter F =0.8x107, the dimensional critical amplitude is a., ~9.3x10™* inch.

These examples indicate that discrete vibrational modes of the resonance frequency

and wavelength are extremely effective sources for the boundary layer tripping.

6. Summary discussion

This study addresses theoretical modeling of hypersonic boundary layer receptivity to
wall-induced perturbations on a flat plate. Since the receptivity problem depends on
different scales and includes small parameters, we used a combination of asymptotic
and numerical methods. Asymptotic analysis allows us to obtain compact analytical
relations for the receptivity function, identify governing nondimensional parameters
and establish basic features of the receptivity mechanism. Analytical results were
integrated in a computationally non-intensive module, which was combined with a
standard stability code. This module provides initial amplitudes of normal waves

excited by wall disturbances of various types and shapes.

If the discrete spectrum of the boundary-layer disturbances is simple, i.e. eigenvalues
of normal waves are different, then receptivity to wall forcing of a traveling wave

form shows the following features:

e Resonant excitation occurs in narrow regions of the length / = R}'*5 .

e Normal-wave amplitude is proportional to (L/&)"* = R},
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e As the Reynolds number increases, nonparallel effects (which disturb the
resonance condition) decrease and the relative length of the resonance region,
1168, increases. In the parallel-flow limit, R, — o, the normal wave amplitude
tends to infinity. In this case, the upper limit of disturbance amplitude is

determined by nonlinear effects.

These conclusions are consistent with the results of [23] obtained for subsonic

boundary layers.

As contrasted to the case of distributed forcing, local forcing generates the boundary-
layer disturbance of a finite amplitude even in the parallel flow limit. This is due to
the fact that only a small portion of the forcing spectrum, (@—a,)=0(¢"?), is
involved into the resonance mechanism. As & — 0, the resonant excitation increases
proportionally to £ whereas the spectrum region is narrowed down proportionally
to 2. Because both trends compensate each other, the normal-wave amplitude tends
to a finite value as & — 0. This conclusion is consistent with the results of [25]

obtained for subsonic boundary layers.

Calculations showed that a hypersonic boundary layer is very sensitive to vertical
velocity perturbations to be in resonance with the boundary-layer normal waves. Such
perturbations may be induced by suction-bowing through a hole or slot as well as by
skin vibrations. Receptivity to surface temperature perturbations is relatively low. For

adiabatic flat plate at Mach number M, =638, a two-dimensional vibrator of the
length I~/ at,, amplitude a* ~ 0.014/x;v, /U, and frequency F =10"" induces the
second-mode wave of the initial mass-flux amplitude O, (x,,2,) = 0.1% If nonlinear
breakdown begins at the critical amplitude Q,, ~ 1%, then the amplification factor is

estimated as N =1In(Q,, / Q,) ~2.3. This value is essentially less than the empirical

value N ~ 10 for “quiet” conditions.
As shown in [13] and [21], discrete spectrum of hypersonic boundary layer has branch

points, where eigenvalues of the first and second modes coincide. In the branch-point

influence domain, the normal wave decomposition is not valid and should be replaced
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by a local solution. In the cooled wall case, the first branch point is located very close
the lower neutral branch of the second mode. Both propagation and excitation of
normal waves are singular in the branch-point influence domain. The receptivity
function tends to infinity as the resonance point approaches the branch point.

Asymptotic analysis of this singularity leads to the following conclusions:

o Distributed receptivity to traveling force wave is not singular at the branch point.
The receptivity function peak is totally due to a singular behavior of normal

waves. If one measures the disturbance amplitude Q at a fixed point downstream
from the branch point x,, for various loci of the resonance point x,,, then he will

not observe a peak of the distribution Q(x,,) at the point x,, = x,,.

e Local receptivity strongly depends on a distance between the forcing element

locus x,, and the branch point. As x,, = x,,, the normal-wave amplitude

. . -1/4 . . .
increases proportionally to ‘xw —xlb] and attains its maximum value of the

1/

order of £7"/¢ at x,, = x,, . If one measures the disturbance amplitude Q at a fixed

point downstream from the branch point for various loci of the forcing element,

then he will observe a local peak in the distribution Q(x,, ) at the point x,, = x,,.

Suction-blowing and skin vibrations are very effective sources of the second mode
excitation in the branch-point vicinity. Receptivity to surface temperature

perturbations is essentially lower.

Critical amplitudes a, of skin vibrations were estimated for bypass of the linear

stability phase. Assuming that bypass occurs at the disturbance level Q, =1%, we

found that

e for a local two-dimensional vibrator on adiabatic wall at Mach M, =6.8, the

critical amplitude is a,, ~0.09,/v,x" /U. near the lower neutral branch;

e for a local two-dimensional vibrator on cooled wall at Mach M, =5.95, the

critical amplitude is a;, ~0.025,/v;x" /U, near the first branch point;
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e for two-dimensional vibrational wave on adiabatic wall at Mach M, =6.8,

critical amplitude is a,, ~0.005,/v,x" /U, near the lower neutral branch;

e for two-dimensional vibrational wave on cooled wall at Mach M, =5.95, critical

amplitude is a;, ~0.0004/v,x” /U, near the first branch point.

In all cases considered, receptivity maximum corresponds to the lower neutral branch.
Normal waves generated in this region start to grow just behind the force element and
can achieve critical amplitudes earlier than those generated elsewhere. If wall forcing
is equally available allover the plate, receptivity near the lower neutral branch is

dominant.

Foregoing examples show that hypersonic boundary layer is extremely sensitive to
skin vibrations. This factor should be accounted for transition prediction in active
(ascending) flight, when propulsion system may induce skin vibrations of sufficiently
high levels. This conclusion is consistent with the transition data [22] obtained on a
sharp cone installed on the rocket nose. Transition loci measured during ascending

flight are close to those obtained in conventional (noisy) wind tunnels.

Our theoretical model needs to be verified by experiment. This can be done in a
hypersonic wind tunnel on a flat plate or sharp cone. An artificial source of local
vibrations can be developed using high-frequency piezoceramic elements. Another
option is to induce periodic suction-blowing perturbations through a hole using the
spark-discharge method developed in the Institute of Theoretical and Applied
Mechanics of Novosibirsk [30]. Our theoretical model can help to predict optimal

parameters of such elements and estimate disturbance levels to be measured.
Of special interest are the cooled plate regimes, when the branch point effects are
most pronounced. These effects can be captured by hot-wire measurements of

disturbance field generated by the wall forcing element of a fixed frequency.

Analytical results have been obtained for three-dimensional disturbances. However,

the numerical examples addressed two-dimensional cases only. In the majority of
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practical cases, disturbance sources are three-dimensional. Calculations of excitation
and evolution of unstable wave packets including the branch-point effects may give a
new insight into the initial phases of hypersonic boundary-layer transition.
Parametrical studies in a wide range of Mach number, pressure gradient, wall

temperature ratio and other parameters are also needed.
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correspond to F x10° =1.4,1.2, 1.0, 0.8 and 0.6 respectively.

3.5

R-10

3.0

2.5

2.0

1.5

1.0

0.5

el e e drenan e brparn s b

Fig. 7a Locus of the receptivity function maximum (solid line) and the lower neutral
branch (symbols): M, =595, T, /T, =01.

63




1.0 -

Gvib,m
0.8 3
0.6 3
1
0.4
]
0.2
0.0 Frrrrrrr T ABAABIARL SARARRARA S AARRARRERARRR,
4 6 8 10 12 14 16
5
F-10

Fig. 7b Receptivity function maximum versus the disturbance frequency: M, =595,
T,/T,=01.

15
1 59
]m(RbI) E
104
5 4‘9
,
0 ?
2
] o
- lw
JEFY.S: SN IS WSS S S— ——
4 6 8 10 12 14 16
5
F 10

Fig. 7c Imaginary part of the first branch point as a function of disturbance frequency:
M, =595, T,/ T, =01.

64




0.30 -
a, ]

i ra
1st mode !
2nd mode e

0.25 3

0.20 3
0.15 3

0.10 J

0.05 7
" 2000

'1000
R

0.00
0

Fig. 8a Disturbance spectrum: M, =68, T, /T, =1, F =10™; distributions a,(R).

0.020 - ¥
a; 3 s’
1 3 .
E "
00154 ~———-- 1st mode It
: 2nd mode L
p "
e ’
0.010 J =
p I
2 r
1 .
. ]
b )
0.005 J '
e ’
p 4
] .
e 4
3 L’
0000 3 -'\/
~0.005 1
-0.010 F—rrrrrrrrr e USRS rr
] 1000 2000

Fig. 8b Disturbance spectrum: M, =68, T, /T, =1, F =10™; distributions a,(R) .

65



0.0025

-0, ]
0.0020 3 / \\
0.0015 / \
0.0010 / \
0.0005 / \
0.0000 / Ve \
—~0.0005 e e
0 500 1000 1500 2000
R
Fig. 9a Second mode increment as a function of Reynolds number;
M,=68,T,/T,=1, F=10"".
107
// G
LS \S
\
10% e
7 Gvib
102 —
/A
10-4 \\
0 500 1000 1500 2000
R

Fig. 9b Receptivity functionsat M, =68, T,/ T, =1, F=10".

66




0.003

Y

ALl

ponn |1 A\ /\
/\[\ \ /\\\
5/%{\ N

NN N
~0.001 F—r—r

5 ,..1bob,.. ...éoob... r..joob...

R

Fig. 10a Second-mode increment as a function of Reynolds number:
M,=68,T,/T,=1;curves 1, 2, 3, and 4 correspond to the

frequency parameter F x 10* =1.4, 1.0, 0.8 and 0.6 respectively.

r

10'2.:
1 2l 4
Q 102
QS 10 I /// 7
10
0 1000 2000 3000
R
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